Content-Attribute Disentanglement for Generalized Zero-Shot Learning

نویسندگان

چکیده

Humans can recognize or infer unseen classes of objects using descriptions explaining the characteristics (semantic information) classes. However, conventional deep learning models trained in a supervised manner cannot classify that were during training. Hence, many studies have been conducted into generalized zero-shot (GZSL), which aims to produce system both seen and classes, by transferring learned knowledge from Since share common semantic space, extracting appropriate information images is essential for GZSL. In addition semantic-related (attributes), also contain semantic-unrelated (contents), degrade classification performance model. Therefore, we propose content-attribute disentanglement architecture separates content attribute images. The proposed method comprised three major components: 1) feature generation module synthesizing visual features; 2) discriminating codes images; 3) an comparator measuring compatibility between class prototypes act as ground truth.With extensive experiments, show our achieves state-of-the-art competitive results on four benchmark datasets Our outperforms existing methods all datasets. Moreover, has best accuracy well retrieval task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning

Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...

متن کامل

Generalized Zero-Shot Learning via Synthesized Examples

We present a generative framework for generalized zeroshot learning where the training and test classes are not necessarily disjoint. Built upon a variational autoencoder based architecture, consisting of a probabilistic encoder and a probabilistic conditional decoder, our model can generate novel exemplars from seen/unseen classes, given their respective class attributes. These exemplars can s...

متن کامل

Is Attribute-Based Zero-Shot Learning an Ill-Posed Strategy?

One transfer learning approach that has gained a wide popularity lately is attribute-based zero-shot learning. Its goal is to learn novel classes that were never seen during the training stage. The classical route towards realizing this goal is to incorporate a prior knowledge, in the form of a semantic embedding of classes, and to learn to predict classes indirectly via their semantic attribut...

متن کامل

LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning

Conventional zero-shot learning (ZSL) methods recognise an unseen instance by projecting its visual features to a semantic space that is shared by both seen and unseen categories. However, we observe that such a one-way paradigm suffers from the visualsemantic ambiguity problem. Namely, the semantic concepts (e.g. attributes) cannot explicitly correspond to visual patterns, and vice versa. Such...

متن کامل

Ordinal Zero-Shot Learning

Zero-shot learning predicts new class even if no training data is available for that class. The solution to conventional zero-shot learning usually depends on side information such as attribute or text corpora. But these side information is not easy to obtain or use. Fortunately in many classification tasks, the class labels are ordered, and therefore closely related to each other. This paper d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3178800